Using the Internet Gopher Protocol to Link a Computerized Patient Record

and Distributed Electronic Resources
Joseph W. Hales, PhD, Division of Medical Informatics,
Richard C. Low, Medical Center Information Systems,
Kevin T. Fitzpatrick, PA-C, Medical Center Information Systems,
Duke University Medical Center, Durham, North Carolina

At Duke University Medical Center, we are
developing a prototype clinical application for
automated patient care plans with integrated links
to electronic documents and other electronic
resources. These links are implemented using the
Internet Gopher Protocol, an emerging standard for
distributed document search and retrieval. Use of
this protocol permits storage of electronic
documents in an open, nonproprietary manner.
This paper discusses the architecture of the link
mechanism and presents some of the advantages
and disadvantages of the proposed method.

INTRODUCTION

One of the great advantages of automated
clinical applications is the ability to link patient data
to information about that data, in a hypertext
fashion. These links can provide definitions,
explanations, examples, reminders, and educational
information. Futuristic depictions describe clinical
information systems that link a diagnosis to an
electronic text describing the diagnosis or to the
results of an automatically executed bibliographic
search of the latest therapy for the problem(1].
Further, one of the goals of the IAIMS effort is to
"provide institution-wide access to appropriate
bibliographic and knowledge databases" and present
them in an integrated fashion[2].

A number of researchers have implemented or
proposed models for supporting links between
clinical applications and electronic resources such
as online documentation and bibliographic databases
[3,4,5,6,7,8,9,10].

Typically, attempts to link electronic
documents or other resources to a clinical
application have taken one of two approaches. The
first approach is to tightly couple the document or
external resource through some proprietary link or
through wholly incorporating the resource into the
application. For example, TMR is linked in this
way to the Duke University Medical Center
Laboratory Manual[11,12]. While reviewing
patient laboratory results, the user can request to

0195-4210/92/$5.00 © 1994 AMIA, Inc.

621

see the contents of the manual for a specific test.
The text of the manual is coded in the same
proprietary data structure used by TMR and
requires a program written in the TMR application
language (GEMISCH) to access the manual.

The second approach is to provide a simple
interface between the clinical application to online
resources as a stand alone program. This often
fails to hide from the user differences in the
interfaces of the different applications. . A common
example is using telnet to connect from a host
running one application, such as a laboratory
information system, to another host running a
second application, such as a bibliographic retrieval
application. For example, at Duke University
Medical Center, a TMR-MEDLINE link passes
previously determined search criteria to a search
program searching the current literature for
information on patient specific acid-base
imbalances[3].

Ideally, there is a balance between highly
integrated resources that give the impression one
application and stand alone resources that can be
accessed independently. At the same time, the
links between clinical applications and electronic
resources should be context sensitive. Based on the
patient’s condition or the context of information
presently on the computer screen, the links should
point to the most related (useful) part of the
electronic resource. Recently, standards have
emerged that support these seemingly contradictory
goals.

GOPHER

The Internet Gopher Protocol[13] is an
emerging standard for distributed document search
and retrieval on TCP/IP networks. Documents
may be ASCII text, images, sound or even
executable program files. The protocol is based on
a client-server model. Documents reside on
autonomous servers throughout the Internet. Client
software connects to a server and submits a
request; the server responds with a block of data

interpreted by the client and terminates the
connection. The server’s response may be a
document, a list of documents or a pointer to some
service (e.g., search service or telnet). The
Gopher client displays the returned document or
presents the list of documents as hierarchical menu,
like a file system directory structure. The
hierarchical directory paradigm is dynamically
constructed and hides from the user the fact that the
documents may reside on different servers on
different host platforms.

The server’s response to a client’s initial
request provides the information necessary for
unique document requests by the client. The
server’s response is composed of strings of text,
one line for each document or list of documents
available from the server. An example of a server
response is shown in Figure 1. The format of each
line is a series of fields delimited by tabs (indicated
by - in Figure 1). The first character of the first
field represents the document type; the remaining
characters in the first field are the name of the item
to be displayed by the client to the user. The
document type directs the client how to interpret
the result of the request (e.g., display a document
or display a menu of documents). The second field
represents the "selector” string that should be sent
to the remote host to request the item listed. The
remaining two fields represent the IP domain name
of the server host and the port at which to connect
to request this item. The client software can locate
and retrieve any item from a server by a tuple of
selector, host name, and port. Subsequent queries
by the client are simply transmissions of the
selector string to the specified host at the specified
port.
The protocol is connectionless. All necessary
information for subsequent queries is passed to the
client. As a result, the client need not maintain
elaborate tables of linkage information, since this is
obtained from the server as part of the connection.
The protocol does not preclude, however, the client
from maintaining its own table of selector tuples.

By adding the document type to the tuple of
"selector," host name, and port, a document on a
gopher server is uniquely identified. These tuples
can be saved for direct access without initialization.
The simplicity of the Gopher protocol and the
unique description of a gopher server document
determined by the four-part tuple permit a client
application to be written that communicates with
servers as a regular client. However, this
customized client can retrieve specific documents
buried deep in the directory structure, yet mask the
full hierarchy of documents on the server from the
user.

PROTOTYPE APPLICATION

At Duke University Medical Center, we are
prototyping a customized Gopher client imbedded
as part of a developmental Care Map application.
Care Maps are being developed and implemented as
multi-disciplinary guidelines for patient care. Care
Maps describe 1) common problems; 2) expected
patient outcomes of those problems; and 3) the
multi-disciplinary interventions that are made to
achieve those outcomes for 75% of the patients
with the problem.

Care Maps are an important component of the
Clinical Workstation. Using a spreadsheet-like
display, the Care Map serves as a multi-
dimensional entry point into a computerized patient
record. One desirable aspect of an automated Care
Map application is links to electronic resources,
such as online documentation and clinical event
annotations. For this capability we turned to the
Internet Gopher Protocol.

The Care Map imbedded Gopher integrates the
Internet Gopher Protocol and portions of the
Gopher client software for communication with the
server and document presentation. The resulting
application will smoothly integrate the retrieval of
distributed documents into the Care Map
application. The Care Map application is being
developed on the NeXT (NeXT, Inc., Redwood

1Sampler-+1/Sampler-nameserver?2.mc.duke.edu~70

1Information about Gopher-+1/Information about Gopher-nameserver2.mc.duke.edu~70
1Medical Center Information+1/Medical Center Information~nameserver2.mc.duke.edu~70
INIH Guide to Grants and Contracts-1/nih/nihguide~helix.nih.gov-70

1Biomedical related Information Resources-1/bio~camis.Stanford.EDU~70

BTriangle Research Libraries-+LIBROT1.LIB.UNC.EDU-23
OWeather Forecast for Raleigh Durham+0/Weather/North Carolina/Raleigh-Durhamashpool.micro.umn.edu~70

are separated by tabs, represented here by -».

Figure 1 An example of a response from a gopher server. Each line represents a document or list of documents. Fields

City, CA) computer running NeXTSTEP 3.0. The
Care Map application and imbedded gopher are
built using NeXT’s Interface Builder application
and custom Objective C code. The Care Map
database is maintained in a Sybase (Sybase, Inc.,
Emeryville, CA) relational database.

Objects (Care Map events) in the Care Map
application that may require elaboration or
explanation are linked to a reference table in the
care map database schema. This table of
references lists one or more selector tuples for
"Gopher documents" that are appropriately related
to the even. (An example of the schema is shown
in Table 1.) Selecting the link option for an object
will cause selector tuples to be submitted to the
customized Gopher client. If a single reference
exists, the item (document directory) will be
requested directly. If multiple references exist, the
client will display these as a dynamically
constructed Gopher menu. The imbedded Gopher
client will display the results of a request or
dynamic menu in a pop up window as shown in
Figure 2.

As of this writing, the imbedded Gopher client
can communicate with servers, but the reference
list has not yet been implemented. We are
presently building texts on a Gopher server running
on a Sun 4 (Sun Microsystems Computer Corp,
CA) workstation.

The following is a scenario describing the links
in the Care Map prototype using the Internet
Gopher Protocol. Operation of the full Care Map
application is described elsewhere[14]. A user,
while reviewing laboratory results, sees an alert
regarding an abnormal serum foobar value which is
suggestive of acute hypertension. The user wants

Table 1 Elements of reference link pointer database
schema.

Column Name Type Size
CareMapEvent_id int 4
type char 1
path varchar 255
host varchar 255
port int 4

to consult the links for further information. Three
links are stored in the reference table. The client
presents these as three menu choices. The first link
points to a paper on the Duke Gopher server

623

showing hypertension as a risk factor for
intracranial Hemorrhage. The second reference is
a link to the medical logic module (MLM) that
evoked the alert. This module resides on the
prototype MLM Gopher server at Columbia
Presbyterian Medical Center. The third reference
points at a binary image file showing a 3-D image
of the foobar molecule. This image is located at
the University of Utah on the fictitious Slice of Life
Gopher server.

DISCUSSION

The scenario above is different from many
described elsewhere in the literature, perhaps only
because the electronic links are distributed over the
Internet. The integration of distributed electronic
resources is not revolutionary. However, the use
of the Internet Gopher Protocol adds a standard for
retrieval of distributed documents and a method for
integrating the retrieval engine into clinical
applications in a more seamless fashion than
previously achieved.

Advantages

There are several advantages to the model we
have described. We have already noted what we
believe to be a new degree seamless integration.
At the same time, the protocol is an entirely open
method of distributing online documentation. This
"openness" is the foremost advantage of use of the
Gopher protocol in this application. A standard
protocol permits existing Gopher clients or other
applications that support the protocol to
communicate with the server established to service
care map link requests. A properly constructed
document on a gopher server can be presented as a
complete, organized document to existing client
software and at the same time support requests
from applications like the imbedded care map
gopher for specific documents or subtrees of
documents buried in the hierarchy of the document
structure. Additionally, the client server design
permits client applications to be written for any
platform that supports TCP/IP.

The protocol’s support for distributed
documents permits the same resource to be shared
by multiple institutions without necessarily
distributing copies. As suggested by the scenario
above, a useful collection of related documents can
be presented to the user as a single list of
documents, despite the fact that the documents are
widely distributed. This distribution potentially.

Day 2: Floor

Day 4

Day 3

Treatnents Access site care

Access site care

Access site care

Assessment

Bleeding precauti

Cath
Nonitor
VS q 2hrs.

vhile

Laboratory ABC, platelets

Chem 7

Lipoprotein profi s
Thyroid Panel

Cardiology

Oximetry
Thallium ETT

Medications Beta blocker

ECSA

Heparin

Nit;t.)v paste (off
Step I AHA
Bedrest

o

Figure 2 Example of how a window of linked text retrieved using an imbedded gopher client will appear.

reduces maintenance overhead, since original
documents can be managed "local” to the document
producer. Ideally, institutions could identify
themselves as domain or specialty repositories and
serve as the primary developer and maintainer of
electronic documents in those domains.

Disadvantages

Most disadvantages of using the Internet
Gopher Protocol to support electronic links center
around the minimalist nature of the protocol.
While a variety of documents can be retrieved,
including text and images, many formats are not
supported and the documents are not interactive.
Gopher does not support hypertext linkages within
or between retrieved documents. Additionally, in
practice, network access may not turn out to be
sufficiently reliable for geographically distant
requests, lacking speed or consistency.
Performance could be improved by redundant
distribution of servers.

A major Issue in the individualized patient risk assessment Is whether the
. Increased Incidence of intracranial hemorrhage Is offset by the decreased risk
&l of embolic or thrombotic stroke with thrombolytic therapy. In fact, the major
x| placebo-controlled trials of thrombolytic therapy have found little diflerence in
& total stroke rate between treated and conlrol patients.10,12-14 Historical
5 studies have also demonstrated a total stroke rate of 1-3% during the
hospitalization in patients with conservatively treated AML.IS

624

TABLE 1 Risk Factors for Intracranial Homorrhage

Major (vombdyic therapy absdutely containdicaed)
Known ink acranial bmor
Priar neurosurgery
Recent stoke (within 6 months)
Recent head hauma (wi hin 1 mondh)
Significast (substanfial relafive containdicaion to thrombolyic heragy)
Acu® severe hyper®nsion
Remote skroke known not b be hemonhagic
Recent rarsientischemic attacks
Mner (rcreased risk of besding, but #vambolyic herapy rot cont aindicaled
Older age
Smaller body size
Hslory of hyperiension Female gender

Finally, maintenance of the reference pointers
within the application may be difficult. The
Gopher Protocol was developed to support an
interactive client. At initialization, interactive
Gopher clients receive from the server all of the
information necessary for subsequent requests.
Since the customized client using a stored reference
table does not request the initial structure of the
server, changes in the document structure of the
server are not reflected nor updated in the reference
table. This updating is less important if the
documents are relatively static. Additionally, by
pointing at subtrees of the document structure
rather than individual documents, the impact of
some changes can be reduced.

CONCLUSION
Using the Internet Gopher Protocol, an

emerging standard for distributed document
retrieval, we have proposed a model for integrating

networked electronic resources with clinical
applications. This model supports a high level of
integration while still retaining open access to the
electronic resources. Additionally, we have built a
prototype system implementing portions of this
model.

Proposal

In conclusion we offer a proposal to the medical
informatics community. We recommend a formal
effort to coordinate the development of medical
informatics related Gopher servers. We believe
friendly cooperation between institutions may
reduce redundancy through, for example,
establishment of dedicated domain-specific servers
like the prototype MLM server at Columbia
University. Additionally, a coordinated effort can
develop guidelines for application links to
distributed texts accessible via the Gopher protocol.
Finally, a community effort will likely be needed to
establish mechanisms to address the issues of
intellectual property of electronic biomedical
documents.

ACKNOWLEDGMENTS

This work is supported in part by National Library
of Medicine Grant GO8-LM-0-4613-06.

Reference

[1]. Shortliffe EH, Perrault LE, Wiederhold G,
Fagan LM (eds.). Medical Informatics, Computer
Applications in Health Care. Reading,
Massachusetts: Addison-Wesley Publishing Co.;
1990.

[2]). Stead WW, et al. IAIMS-the role of
strategic planning. Proceedings of the 13th Annual
SCAMC. 1989; 13:345-349.

[3]. Hammond JE, Hammond WE, Stead WW.
Information Management Through Integration of
Distributed Resources: The TMR-NLM
Connection as a Prototype. Proceedings of the
14th Annual SCAMC. 1990;14:719-723.

[4]. Frisse ME, Cousins SB. Query by
Browsing: An Alternative Hypertext Information
Retrieval Method. Proceedings of the 13th Annual
Symposium on Computer Applications in Health
Care. 1989;13:388-391.

625

[5]. Cimino C, Barnett GO. Standardizing
Access to Computer-Based Medical Resources.
Proceedings of the 14th Annual SCAMC. 1990;33-
37.

[6]. Deibel SRA, Greenes RA, Snydr-Michal JT.
DeSyGNER: A Building Block Architecture
FFostering Independent Cooperative Development of
Multimedia Knowledge Management Applications.
Proceedings of the 14th Annual SCAMC.
1990;14:445-449.

[7). Clark AS, Shea S. Free Text Databases in
an Integrated Academic Information System
(IAIMS) at Columbia Presbyterian Medical Center.
Proceedings of the 15th Annual SCAMC.
1991;15:333-337.

[8]. Loonsk, JW, Lively R, TinHan E, Litt H.
Implementing the Medical Desktop: Tools for the
Integration of Independent Information Resources.
Proceedings of the 15th Annual SCAMC.
1991;15:574-5717.

[9]. Cimino JJ, Johnson SB, Aguirre A, Roderer
N, Clayton PD. The Medline Button. Proceedings
of the 16th Annual SCAMC. 1992;16:81-85.

[10]. Hales JW, Gardner RM, Huff SM.
Integration of a Stand-alone Expert System with a
Hospital Information System. Proceedings of the
16th Annual SCAMC. 1992;16:427-431.

[11]. Stead WW, Hammond WE. Computer-
Based Medical Records: the Centerpiece of TMR.
MD Computing. 1988;5(5):48-62.

[12]. Grewal R, Arcus J, Bowen J, Fitzpatrick
KT, Hammond WE, Hickey L, Stead WW.

Bedside Computerization of the ICU, Design
Issues: Benefits of Computerization Versus Ease of
Paper & Pen. Proceedings of the 15th Annual
SCAMC. 1991;15:793-797.

[13]. Anklesaria F, et al. The Internet Gopher
Protocol. Network Working Group Request for
Comments: 1436; March 1993,

[14]. Fitzpatrick KP, Low RC, Campbell J,
Boyarsky W, Pickett MP. An Object Oriented
Clinical Care Map Application Utilizing the
NeXTSTEP™ Operating System. Submitted to
Seventeenth Annual SCAMC.

